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Abstract. Simulation and virtual experiments are important stages of robotics research. Robotics 

simulators allow testing new hypothesis and algorithms without taking risks to destroy valuable hardware. 

Therefore, most of popular robots are sup-plied with simulation models from their makers or associated 

research groups. This tutorial paper describes a process of creating of a robot model for the Gazebo simulator 

starting from the model construction and physics setup, and ending up with sensors and Robot Operating 

System based control integration. The process is illustrated with an example of a step-by-step modelling of a 

crawler-type robot Servosila Engineer supplied with an open-source code via a public Gitlab repository. 
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1. Introduction  

Nowadays a number of robotic applications, their hardware and software complexity increase every 

single day, which allows to automate dangerous and repetitive processes [1]. Robots plays important roles in 

manufacturing [2], entertainment [3] and service [4], search and rescue [5], transportation [6], human-robot 

interaction [7], medicine [8] and healthcare [9]. 

Prior to integration of new approaches and algorithms into control systems of real robots, typically, they 

are tested in simulators. Virtual experiments in simulators became a fundamental part of research activities 

since easy created and reproducible complicated physical setups for testing reduce valuable time and 

resource spendings. The usefulness of simulation became the reason for companies to create simulation 

models alongside with real robots. Unfortunately, not all manufacturers provide a proper simulation model 

for their robots, if any, which forces researchers to create such models on their own. 

This paper presents a tutorial on creating a simulation model of a real (existing) robot. It contains 

information about modelling parts of the robot, shows different ways to cope with collision meshes problem, 

explains a procedure of controllers and sensors integration. The model was constructed in the Gazebo 

simulation environment and employs Robot Operating System (ROS, [10]) for control purposes. All 

modelling steps are illustrated using our project of Servosila Engineer modelling [11], [12], which is a 

crawler mobile robot (Fig. 1) produced by Russian company Servosila [13]. 

2. Instruments 

This article presents a step-by-step simulation process using ROS/Gazebo environment. ROS is a broad 

set of tools and libraries packed as a framework that is used for robot application, both for real robots and 

simulations, which are widely used by leading robotics companies, e.g., such as PAL robotics [14] or 

Robotis [15]. Gazebo is a robot simulator, integrated with ROS [16]. A vast majority of robot simulation 

models and plugins with ROS were created for the Gazebo simulator. RViz is used together with the Gazebo 

as a ROS visualizer for data that a robot receives from its sensors [17].  

To work with a 3D model, we recommend using Blender software [18]. It is a free 3D computer graphics 

software, which is used for modelling, animation, and computer games. It appears to be quite popular and 

useful for scientific research, visualization, and modelling [19]. 
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Fig. 1: Servosila Engineer robot at Laboratory of Intelligent Robotic Systems, Intelligent Robotics Department, Institute 

of Information Technology and Intelligent Systems, Kazan Federal University. 

3. Creating a robot model  

Few steps should be done before creating a robot model. A physically realistic model construction 

requires reliable data about the robot, including dimensions of robot links and their weights. Another 

important element for a robot description are default hardware and software limits, e.g., joint limits provide 

information about a workspace of a manipulator in real life. 

3.1. Visual meshes 

The first step is creating a reliable visual 3D model of a robot. Often, a CAD model of the robot could be 

obtained from a manufacturer as these models are used at robot design and production stages. Such model 

could be used as visual meshes. Otherwise, it should be created manually, which is a time-consuming 

procedure that requires experience and execution of a full-stack modelling process. Physical accuracy is 

ensured solely by a good CAD model and documentation (in the first case) or thorough measurements (in the 

second). For multiple reasons, it could be discovered that a manufacturers’ CAD model does not precisely 

correspond to a real robot, and it is a responsibility of a modelling designer to verify measurements and 

update the CAD model accordingly. 

Modelling could be done using any popular 3D engine, such as Maya [20], Blender [21], 3DsMax [22] 

etc. With some efforts, using an existing software, a model could be transferred from one file format 

(associated with a particular file extension) to another. 

3.2. Collision meshes 

Calculating physics of a visual model using only its geometry could be quite efficient. For this reason, 

simulators require additional meshes for every link of a robot, called a collision mesh. It is a mesh that is 

maximally simplified relatively to a visual mesh. There are two methods to create the collision mesh: 

generating models from visual meshes with automatic tools or creating models manually. 

Automatic generation of collision meshes is an easy and fast solution. It suits for research teams that do 

not have a qualified 3D modelling specialist or are severely limited in time. There exist a large variety of 

graphical applications that provide users an ability of an automatic polygon decimation. In our case, Blender 

open-source solution was employed. Decimate function is released in Blender as one of available modifiers. 

First, the model is imported using File-Import-(type of file with your model) tab. Then, if the model is 

complicated and contains multiple parts, it is recommended to decide which parts could be deleted (for 

example, small-size pins, insignificant elements of a decor or inner elements). Each remaining part of the 

model should be supplied with a corresponding Decimate modifier. Modifiers appear in a right menu shown 

in the Fig. 2. Using parameters of this modifier the model could be significantly simplified. Other 

instruments that could be helpful for this task, are ProOptimizer modifier in 3DsMax or Mesh-Reduce option 

in Maya. 

The second approach for collision meshes construction is a manual creation of required models. This 

option requires some expertise in 3D modelling. Creating collision meshes in most cases means covering a 

visual model with a new mesh while excluding small details and keeping only main geometry of objects. The 

expertise and experience are important in order to decide which details of the original model could be 

omitted.  
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Fig. 2: List of modifier options in Blender. 

 

Fig. 3: Mesh examples of the Servosila Engineer robot’s front sub-crawler: an original mesh (left), a simplified 

manually created mesh (center), an automatically generated mesh (right). 

Figure 3 demonstrates three different models. The one on the left is a visual model of a front sub-crawler 

(flipper) of the crawler-type robot Servosila Engineer. The others are collision meshes, which were created 

using different options. The one in the center was created manually [11] and the one on right was generated 

automatically [23]. Table I presents a comparison of the two approaches. When possible, we strongly 

recommend a manual modelling. 

Table 1:  Creating collision meshes methods comparison 

Comparison criteria                     Mode 

Manual Automatic 

Time consumption Low High 

Quality High Low (most cases) 

Optimization High Low (most cases) 

Modelling skills requirements High Low 

4. Building a robot 

4.1. Writing description file 

Unified Robot Description Format (URDF) is a main instrument for a robot description in ROS/Gazebo 

environment. One of the URDF realizations is Xacro (XML Macros) that became popular among users 

because of several improvements such as parametrization and macros. It makes a description more readable 

and easier to construct. The Xacro description could be valuable for a large and complicated project. 

Moreover, it significantly decreases a size of a file. 

Each element of the robot should be properly described. Information about links’ length and joint limits 

allows reaching a good level of similarity between a simulation model and its real-world counterpart. A part 

of a XACRO file code  that describes the Servosila Engineer robot is presented in Fig.4; it contains a 
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description of two links of the manipulator – a waist link (lines 1-14) and a shoulder (lines 23-40) link – and 

a shoulder joint (lines 41-45) between them. 

A description of every link of the robot contains paths to its visual and collision meshes and an inertial 

unit, which includes information of weight and inertia. Joints have information about links they connect, a 

rotational axis and an origin, friction data and limits of position and velocity. 

4.2. Setting up inertia 

Inertias are one of the most significant parts of a robot link description. Incorrectly tuned inertia can 

make a model unrealistic and even destroy it. An example of improperly tuning of the Servosila Engineer 

robot inertias that caused incorrect model behavior after its spawning in a Gazebo world is shown in Fig. 5. 

A proper visual model of the robot initially appeared at a predefined height of a Gazebo world 3D space and 

under gravitation force glided down; upon its contact with a ground plane the parts of the model felt apart. 

01: <!-- waist --> 

02: <link name="waist link"> 

03: <visual> 

04: <geometry> 

05: <mesh filename="package://(path-to-the-directory-with-visual-
meshes)/cronstain.dae"/> 

06: </geometry> 

07: </visual> 
08: <collision> 

09: <geometry> 

10: <mesh filename="package://(path-to-the-directory-with-collision-
meshes)/Cronstain.dae"/> 

11: </geometry> 

12: </collision> 
13: <xacro:cuboid inertia mass="${waist mass}" length="0.08" width="0.08" 

height="0.08"> 

14: <origin xyz="0 0 0" rpy="0 0 0"/> </xacro:cuboid inertia> </link> 
15: <gazebo reference="waist link"> 

16: <selfCollide>false</selfCollide> 

17: <kp>${kp}</kp> 

18: <kd>${kd}</kd> 

19: <mu1>100</mu1> 

20: <mu2>50</mu2> 
21: </gazebo> 

22: <!-- shoulder --> 
23: <link name="shoulder link"> 

24: <visual> 

25: <geometry> 
26: <mesh filename="package://(path-to-the-directory-with-visual-

meshes)/shoulder.dae"/> 

27: </geometry> 
28: </visual> 

29: <collision> 

30: <geometry> 
31: <mesh filename="package://(path-to-the-directory-with-collision-

models)/Shoulder.dae"/> 

32: </geometry> 
33: </collision> 

34: <inertial> 

35: <mass value="${shoulder mass}"/> 
36: <origin xyz="-0.0303 -0.0001 0.1511" rpy="0 0 0"/> 

37: <inertia ixx="0.0295383" ixy="-0.0000001" ixz="-0.0004068" 

38: iyy="0.0292352" iyz="0.0000004" izz="0.0011211"/> 
39: </inertial> 

40: </link> 

41: <joint name="shoulder" type="revolute"> <parent link="waist link"/> 
<child link="shoulder link"/> 

42: <axis xyz="1 0 0"/>  

43: <dynamics friction="${friction}" damping="${damping}"/> <origin 
xyz="0.036 0.051 -0.07" rpy="${pi} 0 0"/> 

44: <limit lower="${shoulder llimit}" upper="${shoulder ulimit}" 

effort="${shoulder mass * 50}" velocity="${joints vlimit}"/> </joint> 
45: <gazebo reference="shoulder link"> 

46: <selfCollide>false</selfCollide> 

47: <kp>${kp}</kp> 
48: <kd>${kd}</kd> 

49: <mu1>100</mu1> 

50: <mu2>50</mu2> 
51: </gazebo> 

Fig. 4: Code listing of the file engineer arm.xacro. 
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An inertial block describes a mass of a link, its center of mass (6 coordinates) and a matrix of inertia 

tensors. The inertial block code example appears in Fig.4, lines 34-39. 

 

Fig. 5: The robot model felt into parts due to wrong inertia settings. 

 

Fig. 6: Inertial blocks for Servosila Engineer model are shown with magenta color. 

Figure 6 presents two attempts of setting the inertial block of the Servosila Engineer robot model in 

Gazebo. Properly tuned inertia should have a shape, which is maximally close to an object it is attached to. 

In Fig. 6 (top picture) one can note that inertia of the robot head (magenta color) nearly three times exceeds 

the original parts of the robot (brown and black colors). Figure 6 (bottom picture) presents corrected inertial 

data. In addition, while setting up inertia, it is important to remember about weights (mass) that do not have 

visual parts; the weights should be set according to the real robot technical information. 

There are several ways to set up inertial blocks. First of all, inertias could be calculated using precise 

measurements and standard formulas. This option might be laborious, especially for complicated models. 

Another solution is to select parameters using visualization in Gazebo (Fig. 7). It could be faster than the first 

option but still it takes time and optimality of this method is quite questionable. The third option, which we 

recommend, is using a corresponding software, e.g., MeshLab [25]. It allows to easily calculate inertia values 

within three steps: 

479



  

• Import a model using File-Import Mesh tab 

• Open a console for a log output with View-Show Layer Dialog 

• Calculate inertia value with option Filters-Quality Measure and Computations-Compute Geometric 

Measures 

Table 2 compares the three options of setting up inertial blocks by their time consumption and resulting 

quality. 

 

Fig. 7: Inertias option tab of View menu in Gazebo simulator. 

Table 2:  Inertia setting methods comparison 

Comparison criteria Approach 

Inertia formulas Visual approximation Software 

Time consumption Low Low (most cases) High 

Quality High Low (most cases) High 

 

4.3. Adding ROS controllers 

Controllers are used for moving a robot within a simulation. They are connected to model joints and 

move them according to given commands. Adding controllers contains three steps: 

1) Add transmissions to every moving joint. The trans-mission contains information about a type of a 

joint, an interface, an actuator and a name of a joint it is connected to. An example of code with a 

transmission description is listed in Fig.8. 

01: <transmission name="waist_shoulder_trans">  
02: <type>transmission_interface/SimpleTransmission</type>  

03: <actuator name="waist_shoulder_motor">  

04: <mechanicalReduction>1</mechanicalReduction>  
05: </actuator> 

06: <joint name="shoulder"> 

07: <hardwareInterface> 
08: hardware_interface/EffortJointInterface 

09: </hardwareInterface> 

10: </joint> 
11: </transmission> 

Fig. 8: Code listing of the file engineer_arm.xacro. 

2) Create a YAML file that contains parameters of the controllers. It contains a controller type, a joint 

name and PID parameters. An example of such description is listed in Fig.9. 

 

1: shoulder_position_controller: 

2: type: effort_controllers/JointPositionController 
3: joint: shoulder 

4: pid: {p: 100.0, i: 0.01, d: 10.0} 

Fig. 9: Code listing of the file engineer_control.yaml. 

3) Create a launch file for the controllers. It should contain a loader of a controllers’ list created in the 

previous step and a launcher of the controllers. An example of a launch file is listed in Fig.10. 
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1: <rosparam file= 

2: "$(find engineer_control)/config/engineer_control.yaml" command="load"/> 
3: <node name="controller_spawner" pkg="controller_manager" 

type="spawner" respawn="false" output="screen" 

args="shoulder_position_controller"/> 

Fig. 10: Code listing of the file engineer_control.launch. 

Finally, after launching the model and its controllers, several ROS-topics are required to control the 

robot in a simulated environment. For example, to control shoulder joint there is a topic named shoulder 

position controller (refer the code in Fig.4). It works with a message of std/msgsFloat64 type. To send a 

command to the controller the command in Fig.11 is used. 

 

rostopic pub -1 \/shoulder\_position\_controller std\_msgs\/Float64 "data: 0.5" 

Fig. 11: Console command for sending command to the robot. 

4.4. Adding sensors 

Robots are typically equipped with several types of onboard sensors, including cameras, laser range 

finders (LRF), IMUs and others. A number of sensors already have simulation models for the ROS/Gazebo 

environment. Adding a sensor to a robot simulation model means adding it to a robot description in a 

XACRO or URDF file. Every sensor type has its own description pattern incapsulated into a corresponding 

plugin [26]. An example of a sensor description in Fig.12 corresponds to a mono camera of the Servosila 

Engineer robot. 

01: <gazebo reference="camera${number}_link"> <sensor type="camera" 

name="camera_${number}"> <update_rate>${fps}</update_rate> 

02: <camera name="head_${number}"> 
<horizontal_fov>1.3962634</horizontal_fov> <image> 

03: <width>${width}</width> 

04: <height>${height}</height> 

05: <format>R8G8B8</format> 

06: </image> 

07: <clip> 
08: <near>0.02</near> 

09: <far>300</far> 

10: </clip> 
11: <noise> 

12: <type>gaussian</type> 

13: <mean>0.0</mean> 
14: <stddev>0.007</stddev> 

15: </noise> 

16: </camera> 
17: <plugin name="camera${number}_controller" 

18: filename="libgazebo_ros_camera.so"> 
19: <alwaysOn>true</alwaysOn> 

20: <updateRate>0.0</updateRate> 

21: <cameraName>camera${number}</cameraName> 
22: <imageTopicName>image${number}_raw</imageTopicName> 

23: <cameraInfoTopicName>camera_info</cameraInfoTopicName> 

24: <frameName>camera${number}_link_optical</frameName>] 
25: <hackBaseline>0.0</hackBaseline> 

26: <distortionK1>0.0</distortionK1> 

27: <distortionK2>0.0</distortionK2> 
28: <distortionK3>0.0</distortionK3> 

29: <distortionT1>0.0</distortionT1> 

30: <distortionT2>0.0</distortionT2> 
31: <CxPrime>0</CxPrime> 

32: <Cx>0.0</Cx> 

33: <Cy>0.0</Cy> 
34: <focalLength>0.0</focalLength> 

35: </plugin> 

36: </sensor> 
37: </gazebo> 

Fig. 12: Code listing of the file engineer_arm.xacro. 

An example of working sensors is demonstrated in Fig. 13. Data from working cameras and LRF are 

presented in RViz. LRF scan data are shown in the left subfigure with red dots, corresponding to a ball and a 
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cube obstacles of the simulated Gazebo world (right subfigure). Visual data are captured by the four cameras 

of the robot, and a user could switch between video streams of the cameras by going through the 

corresponding tabs in the bottom of the camera window (left subfigure); in the figure a dynamically updated 

frame from the right camera demonstrates the ball and the cube obstacles. 

5. Conclusions 

This paper presented a tutorial for creating a simulation model within the Gazebo simulator using Robot 

Operating System (ROS). It described an entire process starting from the model construction and physics 

setup and ending up with sensory and Robot Operating System based control. The process is illustrated with 

an example of a step-by-step modelling of a crawler-type robot Servosila Engineer. Examples of 

implementation with code, detailed comments, explanations, and corresponding video files are available as 

open source supporting files [24]. 

 

Fig. 13: Example of the working cameras and the LRF in the simulation. Right: side view of the robot and the 

environment in the Gazebo simulation. Left:  RViz window with data from the right camera in simulation; the red 

rectangular emphases tabs of switchable camera views; the yellow circle emphases LRF data that corresponds to the 

cube obstacle; the magenta circle emphases LRF data that corresponds to the ball obstacle. 
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